Impact of Compliance and Other Factors on Fracture Risk for Osteoporosis in Postmenopausal Women in Hungary

Lakatos P¹, Toth E², Kovács E², Lang Z², Psachoulia E³, Intorcia M³

¹1st Department of Medicine, Semmelweis University, Budapest, Hungary; ²Healthware Consulting Ltd, Budapest, Hungary; ³Amgen (Europe) GmbH, Zug, Switzerland

INTRODUCTION

- Osteoporosis is a condition characterized by low bone mass & microarchitectural deterioration of bone tissue and thus an increase in bone fragility and the risk of fractures.
- The economic burden of osteoporosis is substantial and costs are expected to increase in the future due to higher incidence of fractures and demographic changes.
- Patients with prior fractures face an increased risk of sustaining subsequent fractures & the goal of intervention is hence to prevent the first fracture (1), mainly hip & vertebral fractures that are associated with the largest costs & reduction in quality of life for patients (2).
- However, compliance with osteoporosis drugs is frequently very low, leading to increased fracture risk.

OBJECTIVE

 Examine the factors associated with fracture risk in women with postmenopausal osteoporosis (PMO) in Hungary, with key interest in compliance.

METHODS

Study Population

- This retrospective analysis used patients' attendance data from the National Health Insurance Fund Administration (NHIFA) containing detailed provision data (medicine, out- and inpatient services) from the whole Hungarian population.
- Subjects were females, ≥50 years old with a diagnosis of osteoporosis (ICD-10 codes, M80 or 81), who started an osteoporosis drug
 prescription between Jan 2004 and Jan 2011.

Study Design

- The relationship between all factors (covariates) & fracture risk was assessed using Cox proportional hazard models extended to model recurrent events with the Andersen-Gill method (i.e. considering multiple fracture events & not only first fracture) and estimating 95% confidence intervals.
- Covariates, determined based on a 36-month period before the index date (i.e. the start of the analysis period), were:
 - Compliance: 2 models were used: MPR was divided a) into 2 categories, compliant (MPR≥80%) and non-compliant (MPR<80%) and b) into 3 categories, compliant to oral drugs (MPR≥80%), compliant to injectable drugs (MPR≥80%) and non-compliant (MPR<80%), with non-compliant being the reference category in both models
 - 2. Age: 10-year age groups using the 50-59 age group as the reference category
 - 3. **Diagnosis cohorts**: Osteoporosis diagnosis was grouped into primary & secondary prevention (i.e. patients with diagnosis of osteoporosis with no prior fracture & with pathological fracture, respectively), with primary prevention being the reference category
 - 4. Co-medication: 3 groups were used: no co-medication, 1 other therapy and 2 or more other therapies, with no co-medication being the reference category
 - 5. Prior fractures: Prevalence of fractures at index date, with no prior fracture being the reference category
 - 6. Fractures during analysis period: Prevalence of fractures during the analysis period in patients with no fractures at the time of the analysis vs that in patients with ≥1 fracture

RESULTS

- 223,068 patients were analysed and 128,610 matched inclusion criteria for the fracture risk analysis, with 139,604 observations (no. of index dates in the analysis).
- Characteristics of the patients at these index dates are described in Table 1.

Table 1. Patient characteristics used in the analysis

	No. of observations (%)
Age (years)	
Total	139,604 (100.0)
50-59	29,634 (21.2)
60-69	45,706 (32.7)
70-79	44,593 (32.0)
80-89	18,708 (13.4)
≥90	963 (0.7)
Compliance	
Non-compliant	74,956 (53.7)
Compliant	64,648 (46.3)
Diagnosis cohorts	
Primary	94,048 (67.4)
Secondary	45,556 (32.6)
Co-medication	
No co-medication	82,507 (59.1)
With 1 co-medication	39,079 (28.0)
With ≥2 co-medications	18,018 (12.9)
Prior fractures	
No prior fracture	115,097 (82.4)
With 1 fracture	17,585 (12.6)
With 2 fractures	4,513 (3.2)
With ≥3 fractures	2,409 (1.7)

- **Table 2** summarizes the fracture risk analysis for each covariate.
- Patients older than 70 years had an increase in fracture risk of 31% for the 70-79 age group and 76% for the 80+ age group compared to patients aged 50-59 years old.
- Prior fractures were associated with 81% and with 215% increased risks of a new fracture in patients with 1 and 2+ prior fractures, respectively, compared with patients with no prior fractures.
- A relationship was found between any co-medication and fracture risk, with a 15% increase with 1 co-medication and a 36% increase with 2+ co-medications compared to none.

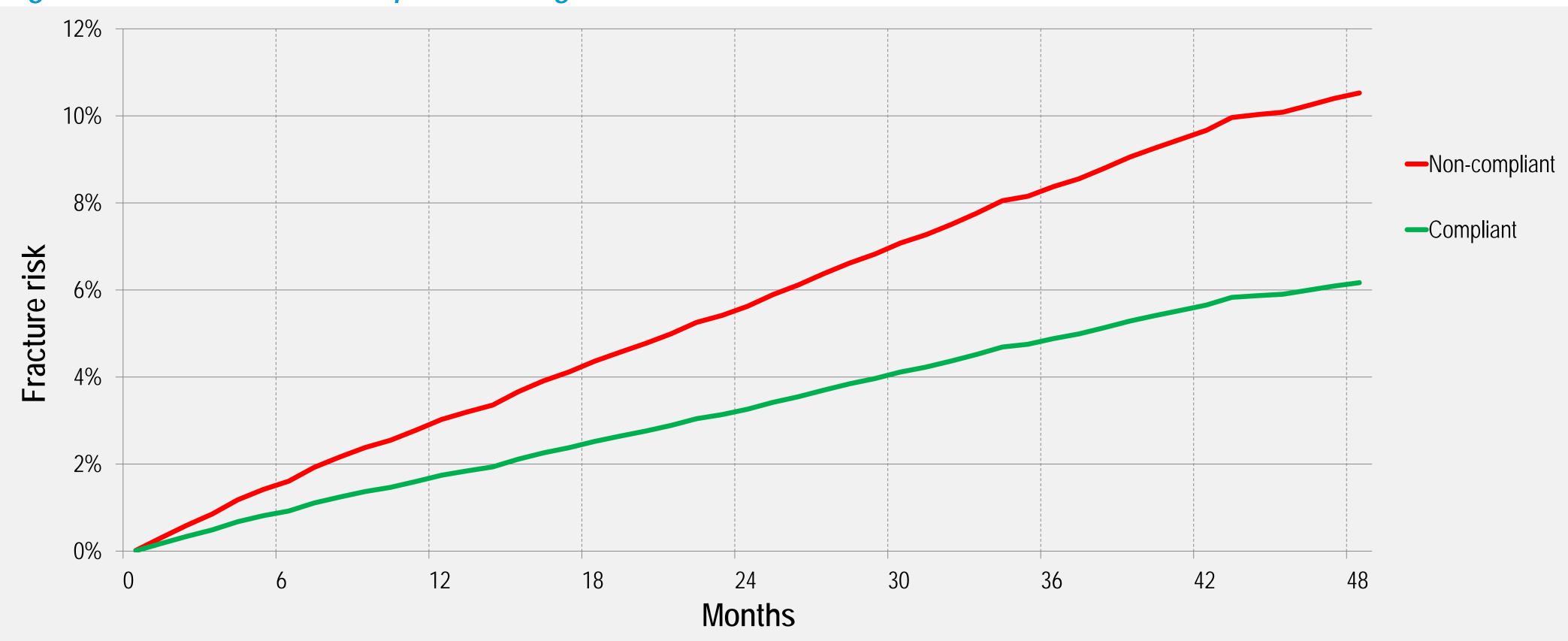

Table 2. Relative fracture risk by each covariate using the Andersen-Gill method

Table 2. Relative fracture risk by cach covariate using the Andersen-On method							
Covariate	Category		RR	p-value	95% Confidence interval		
Compliance	Non-compliant		1.00	-	-		
	Compliant	All drugs	0.57	0.00	0.49 - 0.66		
		Oral drugs*	0.60	0.00	0.51 – 0.71		
		Injectable drugs*	0.44	0.00	0.30 - 0.64		
Age (years)	50-59		1.00	-	_		
	60-69		1.09	0.23	0.95 – 1.26		
	70-79		1.31	0.00	1.14 – 1.51		
	80+		1.76	0.00	1.51 – 2.05		
Diagnosis cohort	Primary		1.00	-	-		
	Secondary		1.32	0.00	1.16 – 1.48		
Co-medication	0		1.00	-	_		
	1		1.15	0.01	1.04 – 1.28		
	≥2		1.36	0.00	1.20 – 1.54		
Prior fractures	0		1.00	-	-		
	1		1.81	0.00	1.54 – 2.13		
	≥2		3.15	0.00	2.58 – 3.85		
Fractures during analysis	ures during analysis 0		1.00	-	-		
period	≥1 fracture		1.32	0.00	1.09 - 1.60		

*Outcomes of different models

Overall, compliant patients had a 43% fracture risk reduction versus non-compliant patients (**Fig.1**). Compliant patients administered injectable drugs had a 56% fracture risk reduction versus non-compliant patients, while compliant patients receiving oral drugs had a 40% fracture risk reduction versus non-compliant patients.

Figure 1. Fracture risk in compliance categories

REFERENCES

1. Who are candidates for prevention and treatment for osteoporosis? *Osteoporos Int*, 1997;**7**:1-6. 2. Delmas PD. *Lancet*, 2002;**359**:2018-26.

DISCLOSURE

- This study was sponsored by Amgen (Europe) GmbH and GlaxoSmithKline.
- M. Intorcia and E. Psachoulia are employees and shareholders of Amgen; P. Lakatos has received consulting, research and speaker fees and grants from many companies with drugs for bone diseases, including Amgen; E. Kovács, Z. Lang and E. Tóth are employees of Healthware Ltd and conducted this research under contract to Amgen.

CONCLUSIONS

- Age, any co-medication and prior fractures were associated with an increased relative risk of fracture.
- Compliance, however, was associated with protection against fracture (reduction of relative fracture risk), with injectable drugs providing greater risk reduction than oral drugs.
- Main limitation of this analysis is that it was not possible to adjust for some important confounding factors, e.g. BMD Tscores, as this information was not available.